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1. Introduction.

->While it is well-known that every purely.ﬁéndeterministic full rank q-
variate weakly stationary stochastic proces§?{SSP)f)fkh} ;ﬁth the spectral
density W has an (infinite order) one-sided moving average representation, not
every such process can have a mean convergent (infinite order) autoregressive
representation (ARR) and the problem of ARR of such processes has not received
the attention which it deserves. Due to the importance of AKR in prediction
theory, and particularly in the statisfica] theory of multivariate time series,
this paper is devoted to the problem of finding the weakest condition on W
which guarantees the existence of an infinite order ARR for E%n}'

To be more precise, we say that the SSP{Xn} has a mean tqnvergent { summ-
able) ARR if there exists a sequence {Ak}:=1 of constant q x q matrices

such that, for each n,
(1.1) X, = Y A X,

where {en} is the innovation brocess of {xn} and the infinite series

) AX .k 15 to be convergent (summable) in the mean. This representation of
k=1 N '

the process {Xn} as an infinite order stochastic difference equation can also
be regarded as the inversion of the one-sided moving average respresentation of
{Xn} given in (2.6). Such inversion of the one-sided moving average representa-
tion of a g-variate SSP plays a vital role in the statistical estimation of the
parameters of {Xn}. For the notation and definitions see Section 2.

It is obvious that the problem of ARR {xn}. cf. (1.1), is equivalent to

the problem of ARR of in (the linear least squares predictor of Xn based

n-1
on (X i k211):
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which has been studied by Wiener and Masani [16], and Masani [ 71].

It follows from the isomorphism between the time and spectral domains of
{X"} that the infinite series (1.1) or (1.2) is mean convergent (summable),
if and only if the isomorph of € in Lz(w) has a convergent (summabie)
Fourier series in the norm of Lz(w). For a purely nondeterministic full rank
SSP {Xn} with the spectral density W = ¢¥* and G the one-step ahead predic-
tion error matrix, it is well-known [6, II, p.115] that the function G!E o1 eine
in Lz(w) is the isomorph of € in M(X). Thus, the series in (1.1) is mean
convergent (summable), if and only if the Fourier series of ¢! is convergent
(summable) to 0'1 in the norm of Lz(w). Also, it can be shown tﬁat the

A
(v+l)-step ahead (v =20) 1linear least squares predictor X based on

n+vin-1

X ; k=11 has a mean convergent (summable) ARR, if and only if the Fourier

n-k
series of Q'Iis convergent (summable) to o1 in the norm of Lz(w). (This
latter assertion for the univariate processes 1is proved by Miamee and Salehi [11]
in the spectral domain and by Bloomfield [3] in the time domain.)

From the previous discussion the convergence (summability) of the Fourier
series of ¢_1 to o7t in the norm of LZ(W) emerges as the only spectral
necessary and sufficient condition for the existence of a mean convergent (summ-
able) ARR of {Xn}. Although this condition is not concrete in terms of W, it
is extremely useful in obtaining some useful concrete sufficient conditions in
terms of W for the ARR of {Xn}. These conditions are stated and proved in
Section 3 by using some techniques from harmonic analysis. In the following
we review and discuss the implication of these conditions for the problem of

ARR of {Xn}.

-
-------------
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In 1958, it was shown by Wiener and Masani [16] that the boundedness con-
dition c I <W<dlI, where 0 <c sd <=, is sufficient for the existence
of a mean convergent AKR of {Xn}. Later, Masani [7, Theorem 5.2] weakened this

\ severe boundedness condition considerably and replaced it by

(1.3) We quq’ " quq'

It was pointed out by Masani [7, p. 143] that the condition W ¢ L:Kq in (1.3)
is unduly strong and it would be worth while to relax it. (It was also conjec-
tured by Feldman [4] that the condition W e L:xq is dispensable.)

In [13] the author has shown that, indeed, the restriction W ¢ L:xq is
dispensable. This is done by employing the equivalence between the convergence
of Fourier series of all functions in LZ(W) and the positivity of the angle ©
between the "past and present" subspace and the "future" subspace of {Xn} cf.
Theorem 3.1. Thus, we have from Theorem 3.1 that {Xn} has a mean convergent

ARR if
(1.4) 0 >0 ( or p(W <1).

For g =1, i.e. a scalar density W, 1t is well-known [6] that o(W) - 1, _,ﬁ%[f
if and only if W = exp(u + V), where u and v are bounded real-valued func-

tions with |[v|l _ < /2. ¥ denotes the harmonic conjugatc of V. From this

characterization of scalar densities satisfying (1.4) it follows that a matrical ;___
density satisfying (1.4) is not necessarily bounded. For some partial character- . ;L"“
izations of matrix-valued densities satisfying (1.4) see [2, 13]. fggjj

It is shown in [13] that (1.3) and (1.4) offer twc independent sufficient

conditions for the existence of mean convergent ARR of {Xn}. Furthermore, condi- "-“
SO
tions (1.3) and (1.4) both entail that Wl e L;xq, i.e. they require that the RS

process {Xn} to be minimal, cf. [7], which we feel is a strong restriction for
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the ARR of {Xn} and it is desirable to relax it.

1
q*q
or minimality of {Xn} in (1.3) is dispensable for the existence of a mean

Our first new result in this paper shows that the condition wlel

convergent ARR of {Xn}. Also this result gives a more general sufficient
condition for the mean convergent ARR of {Xn} which includes both (1.3) and
(1.4) as special cases.

To state this result and for later use we denote the class of densities
satisfying (1.3) by M, those satisfying (1.4) by A and define a new class
A@®M by A®M=1(H;W=WEW, WE, W, cA and W, ¢ M, where W? denotes

121171 2 1

the positive square root of W Note that by choosing W, =1 (w2 = 1) we see

1’ 1
that this new class has M(A) as its proper subset. Now, we can state our first
theorem which is an immediate consequence of Theorem 3.2. We note that this
theorem is a multivariate extension of a similar (univariate) result of Bloomfield
[3] and that the factorization W = wl w2 used by Bloomfield is not suitable in
the multivariate setting, since the product of two positive definite matrices is
not necessarily a positive definite matrix.

Theorem 1.1. Let {Xn} be a purely nondeterministic full rank SSP with the

spectral density matrix W. If We A ® M, then {Xn} has a mean convergent

ARR
It is easy to check that a W in AQ@®M does not necessarily have the
property w'l € L;xq' (As an example when gq = 1, one can take W = |1 - e‘oix .

I A <2.) But, for We A@M, W1 is necessarily in L;ixq. Note that the
scalar density W = |1 - eiel2 which corresponds to the univariate SSP

Xn T nel does not belong to the univariate version of A®M. Thus,
Theorem 1.1 does not provide any information concerning the existence of a mean
convergent ARR for this process. However, this process {Xn} can not have a

mean convergent ARR, since in this case the infinite series in (1.1), i.e.
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-kg X -« does not converge in the mean. This example shows that processes

{X;% for which W is not in A@M (orinother words if W has zeros of order
2 or more), can not have mean convergent AKR. In view of this it is natural to
ask whether such processes can have an ARR with a weaker requirement of conver-
gence, say summability, for the infinite series E Ak xn-k
next theorem shows that this is actually possiblg—ﬁbr a large class of processes

in (1.1). The

when we replace the mean convergence of the series (1.1) by its mean Abel summa-
bility, and compounded Cesdro summability.

We say that {Xn} has a mean Abel summable ARR if the infinite series
in (1.1) is Abel summable in the mean, i.e. lim } o Ay Kook exists in the
r-1" k=1

mean for each n. The next theorem is immediate from Theorem 3.4(c).
Theorem 1.2. Let {xn} be a purely nondeterministic full rank SSP with the
spectral density W. Let P be a complex-valued trigonometric polynomial of

some degree n and We A@M. If W= jP\ZN'. then {Xn} has a mean Abel summ-
able ARR.

From practical point of view (specially for the purpose of prediction)

the mean Abel summable ARR of {Xn} is not particularly useful for the following

k

reason: lim § pK A X, can be approximated by } o

A Y » where r
Y‘-’l k=1 k=l k n-k

0

is near one. Then, since only a finite segment of the past is available, one

N
has to further approximate the infinite sum } r KA X, by } rok A X,

k=1 0 K k=1

where N is the number of available observations from the past. This introduces
A

ann-l'
to replace the Abel summability of the series in (1.1) by another method of

-k -k’

two sources of error in computing, say, In view of this it is desirable
summability which reduces the two sources of error to just one. For this it
seems that the Cesdro, or compounded Cesdro summability is more appropriate.
In the following we provide a different reason (motivated by a computational

problem in prediction theory) for the feasibility of the compounded Cesdro

- .:-."ﬁ‘(:\"'-."i.“\"‘.' N T AN N RO
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summability method in ARR of (X }. -
| Since inn-l € M?;l(x), it is well-known that _ ) et
S 1.5 X = 1im s

( ) r\|n-1 N-soo kzl Nk n-k
| . »

where the ANk's are some gq x q constant matrices to be determined. For a

fixed N, the matrices A K’ 1 <k <N, can be found by inverting an (N+1)gx(N+1)q

N .

| matrix. However, as N increases this procedure requires inverting larger matrices -

and thus becomes less feasible computationally. This is caused mainly by the depen- N

dence of ANk on N. Thus to overcome this computational problem it is desirable to -L}
E find a condition on W which guarantees that either the ANk's in (1.5) can be [";

replaced by Ak s or by °N,k Ak's’ where oNk is a scalgr depending only on k

and N but not on W. Obviously, if the former case prevails then (1.5) reduces
i . to (1.2) or (1.1), and if the latter case prevails we have
3 Ll
-, Rt
: (1.6) L= lim ) o A X .+ | i
/ ) = 1im . € . R
3 N Noe k=1 MKk TRk n RO
|
o
: In either case we have Ak = -G’Dk. k =1,2,..., where the Dk's are the Fourier DRSS
: (Taylor) coefficients of ¢'1, cf. [9]. it?f
i Let {“N}:—l be a fixed increasing sequence of positive numbers such that [f
. it = e
-, N . e
. linl-ﬁ-= 0. We say that {Xn} has a mean compounded Cesdro Summable ARR (corre- .
) N v :. i
) sponding to {m 1) if (1.6) holds with N
:.b' .'_.'.'-'.
e . ~ Lo
: o - - e
: O ) I e T i
. N i=k N -1 N
i M=1,2,..., k =1,2,...,N. For more information on the compounded Cesaro summa- ; ”
“ bility and the oNk's see Section 3, Theorem 3.5 and the discussion preceeding it. iﬁé:i
: Y
X e
!! s
., ;-.f-:
f.x.u‘~1=1nini=“%'*}%;='=;\L"}“}*'"“L*'*}FL‘}“}“'*}*}ﬁL‘} Zﬁ&‘$‘3‘3*§“3*3“3“3"3“3‘}“}“}"}*}*3*}“}“5*}‘}“B=3"3*}"3;?ti



Now, the proof of the next theorem is immediate from Theorem 3.5(b).

Theorem 1.3. Let {Xn} be a purely nondeterministic full rank SSP with the
spectral density W. Let P be a complex-valued trigonometric polynomial of
some degree n and W' e A@M. If W = |P|2w', then the process (X } has
a mean compounded Cesdro summable ARR.

At the end, we would like to note that Theorems 3.4 and 3.5 show the
existence of a mean Abel (compounded Cesaro) summable ARR of {Xn} only when the
spectral density matrix has a finite number of zeros (of any finite orders) on
[-m,7]. As yet, we do not have any in ormation on the ARR of a process whose spec-
tral density has a zero of infinite order. For q = 1, W(s) = exp{—lol'x}.

0 <A <1, provides a family of such densities.

2. Notation and Preliminaries.

q
Throughout this note for a q x q matrix A = (aij), trA = Y a,

. ii’

A* = (Eji), det A stands for the determinant of A and A'l for the];iverse

of A whenever it exists. For two q x q matrices A and B, A » B means that
A-B=0, i.e. A-B is a nonnegative definite matrix. Functions will be
defined on [-m,n] and we identify this interval with the unit circle in the

complex plane in the natural way. Typical value of a function defined on [-n,n]

. ("

or on the unit circle will be denoted by f(8) or f(e‘e). J stands for |
,-TI

and dm for the normalized Lebesgue measure on [-mw,7], i.e. dm(06) = do For

27w °
0<P< o, Lp(Hp) denotes the usual Lebesgue (Hardy) space of functions on the
unit circle, Lz (HP ) denotes the space of all q x q matrix-valued functions
whose entries are in Lp(Hp).

Let (¢,B,P) be a probability space and M = LS(Q.B,B) the Hilbert
space of all complex-valued random variables on © with zero expectation and
finite variance. The inner product in M is given by (x,y) = Exy, x, yeM. In

the following, we introduce a few concepts which are needed in this study, for

‘.‘l,._"'. .-
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more discussion with proofs see [9, 16].
For an integer q, 1 < q < =, ma denotes the cartesian product of M ’
with itself q times, i.e. the set of all column vectors X = (xl,xz,...,xq)

wi th X, € M, 1 =1,2,...,q. Hq is endowed with a Gramian structure. For

I X and Y in M3 their Gramian is defined to be the q x q matrix (X,Y) =
; [(Xi’yj)]’ It is known that M% is a Hilbert space under the inner product ;
; ((x,Y)) = tr(X,Y) and norm || X]| = /{(X,X)) provided the linear combinations ]
! are formed with constant q x q matrices as coefficients. ) _;
Let {xn; nezt <Ml {xn; ne Z} is said to he a q-variate stationary
1 stochastic process (SSP) if the Gram matrix (xm,xn) depends only on m-n, for t i
% all integers m and n. Such a process has a spectral representation, i.e. for ) t j
; all integers n 1 ,j
f §
. (2.1) X = [e'i"eaz(e),

where Z{.) 1is a countably additive orthogonally scattered Mq-valued measure

[9].

the q x q ..anegative hermitian matrix-valued measure F(.) = (Z(.), 2(.)) B
is called the spectral measure of {Xn}. In case F < <m, we say that {Xn}
has the spectral density W = dF/dm on [-m,n]. It can be shown that W(.) {fs

is a nonnegative hermitian matrix-valued function and for all integers m,n,

. (2.2) (X ) = I e~ 1 (M=10 0yam(e).

For each SSP {xn}, let Mr(x) =5Sp {xk; ns<ksm}l, =o<n<m<eo
where sp{ } stands for the closed linear span of elements of { 1} in the
norm of MI. The time domain of {Xn} denoted by M(X) is defined by M(X) = ;Q;u:

o .-....
M (X). The spectral domain corresponding to the spectral density matrix W e
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is denoted by LZ(N) and is defined by
2 .\ . . 2 _
L) = {¥; ¥ a q x q matrix valued function with || v || v

J try*(o)W(e)y(e)dm(6) < =},

It is known that Lz(w) with inner product given by

((2,¢)), = I tr o*(6)W(6)¥(6)dm( o)

\ is a Hilbert space and, [9, Theorem 7.3], that the corfespondence s
- -;j"
b (2.3) Tiv > [v(o)az(e) -
?i is an isometric isomorphism on Lz(w) onto M(X). T 1is called the Kolimogorov ;ié
. isomorphism between the spectral and time domains. It follows from (2.2) and . ::
(2.3) that

(2.4) (JAX, TBX)=(FAae 3% ygeikoy | -

g I ke KR Ty T kek K W o

where J and K are finite sets of integers and Aj, Rj are q x q constant ;;;

matrices. An important problem in the prediction theory of an $SP {xn} is to ;;

find a (meaningful) series representation in the time domain which corresponds i;

to a given ¥ in the spectral domain Lz(w). The identity (2.4) shows that this Eés

can be done very easily when ¥ is a polynomial of finite degree. However, this - ;%

problem is very complicated wheﬁ ¥ is not of this form. EEE

The prediction problem of an SSP {Xn} with the spectral density W ' §§

can be stated as determining the matrices Ak (in terms of W), N - k < ~ such é;

that for a fixed v 2 1, the linear least squares predictor of Xn+v, i.e. :

e
»
l..
e,
.
-
K

.o L' (l ‘.'.: ..'
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A

. n :
e (Xn+v|M_m(X)) can be written as

A N o
(2.5) | Xy = Li: kzo AX =¥ Akxn_k.
where for a vector X ¢ M9 and a subspace S of Mq, (X | S) denotes the ortho-
gonal projection of X on the subspace S of M9,

Let e, = xn - (xnlM'_';l(x)), ne Z. The stochastic process {en; ne Z}
is called the innovation process of {Xn}. It is known that (em, en) = GmnG’
where G = (eo, eg) is the prediction error matrix for lag 1. The sSSP {Xn} is
said to be of full rank if the matrix G 1is nonsingular. Throughout this note
we assume that {Xn} is a purely nondeterministic full rank process. This is
equivalent to assuming that {Xn} has a spectral density W such that log
i0g det W ¢ L1 and W = ¥¢* where ¢ ¢ ngq is an outer function with ¢(0) =

G*. We refer to b as the generating function of the process {Xn}. Since {Xn}

has full rank, we can define a process {Yn}’ called the normalized innovation

= -!i = & i '
process of {Xn}, by Yn G e - Then (Ym,Yn) émnl' By using the ¥old's
decomposition [9] we get an infinite order one-sided moving average representation

for (X }:
n
(2.6) X = Y c v .,

o(0) = § C e. . (c0 = G%).

As a measure of the angle between the past-present and future subspaces

of the process {Xn} we take its "cosine" defined by

o(W) = supl|((v,2))]: ¥ e M0_(X), Z € M3(X)

and ] Y]] <1, || Z|| < 1}.
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%; It is clear that 0 < p(W) < 1. The past-present and future are said to he at
& positive angle if p(W) < 1.
;g 3. Mean Convergence of the Fourier Series of 2! in LZ(N).
¥ As noted in Section 1, mean convergence of the Fourier series of @'l in
LZ(H) emerges as the only necessary and sufficient condition for the autoregres- ) ‘
sive representation of a purely nondeterministic full rank process {Xn} with
the spectral density W. This section is devoted to finding useful sufficient S
conditions on W which guarantee the mean convergénce of the Fourier serieé of ?Zj
: ¢ " and many more functions in Lz(w). fzf
E We would like to note that for a general density W, o1 is not #;;
. necessarily in L:xq and therefore the Fourier coefficients of o'l are not ;f?
& weli-defined. For the next theorem we need the natural assumption on W, that %%;
is W is such that Lz(w) c L;x . Under this assumption the Fourier coefficients Eii%
of every function in Lz(w) is well-defined. It can be shown [10,13,14] tnat - ::?
Lz(w) c Ll if wle L1 » and only if (det wy)~1/2a Ll Thus this assump- . Eﬁi&
9%q 9xq N
tion is weaker than p(W) < 1. ;;3‘
X3 The next theorem which is a multivariate extension of a deep theorem of ;tj
? Helson and Szegd [6, p. 131] provides a necessary and sufficient condition for ;Eﬁ
:i the mean convergence of the Fourier series of every function in Lz(w), c.f. [10, ;;i
‘ 13, 14]. o
ﬁz Theorem 3.1. Let W be a q x q matrix-valued density function. Then o(W) < 1, E;g
: if and only if Lz(u) c L:xq and the Fourier series of any V¥ in Lz(w) converges éit
to ¥ in the norm of Lz(w). ) gz:
‘? Next we find a weaker sufficient condition on W which guarantees the ® ;g}?
'S convergence of the Fourier series of every function in a small subclass S of ;il
5 Lz(w). For a density W, we define S = (v ¢ LZ(H); YHY*® ¢ L:qu. Note that §§§
'é this class has 0'1 as one of its elements. In the following theorem we show §§§
. N
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that if We AQM, then the Fourier series of every ¥ in S converges to V¥

in the norm of Lz(w). This theorem is a matricial extension of a similar uni- '
variate result due to Bloomfield [3].
Theorem 3.2. lLet W bea q g matrix-valued density function and S =
.. v e Lz(w);www* € L:&;}' If Wwe A@!", then the Fourier series of every ' -
) ,
function ¥ € S converges to ¥ 1in the norm of L~ (W).
Proof. Let wy and mq denote the smallest and largest eigenvalue of Nz. :';j
? Then for W e A@M we have '
: (3.1) mlwl <Ws wqwl a.e.(Leb.), w‘*
L.
and for ¥ ¢ S we have \
* (.1 * * -1 ,‘-:t:f
Itr‘l’ WY dm < le try WY dm < || try Wy || w,” dm < =,
' L
which proves that Y e S implies V ¢ Lz'cwl). «
Since V¥ ¢ Lz(wl) and p(wl) <1, it follows from Theorem 3.1 (and the ! )
argument preceeding it) that the Fourier series of every ¥ ¢ S converges to : :
¥ in the norm of LZ(NI). i.e. with S: denot’ing the symmetric n-th partial "
sum of the Fourier series of ¥ we have v
7%
¥ e
(3.2) Hy -S|, +0 as n -+ =,
n Nl
-
To finish the proof we need to show that ||V - S:" y>0 as noe O
But this the consequence of (3.2) and the inequality .‘_'.-;‘\'23
Lo
‘ 2 v, 2
! e - sXI0 s flull, Nle- sl
: ST 2y
: A
: which follows from (3.1). Q.E.D.
: R
e N I
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As mentioned in Section 1, a density in A@®M can not have a zero of
order 2 or more. Thus Theorem 3.2 does not provide any information in regard to
autoregressive representation of such processes. Also it was noted that such
processes can not have mean convergent autoregressive representation. Therefore

it is natural to replace the requirement of mean convergence of the series for .

the autoregressive representation by a weaker mode of convergence for the

series, say, summability. In the following, first we study the Abe! summability ol

of the series involved. For this we need some notation. K
For a density ! we define Hz(w) = EETelneI; n 20} in Lz(w); No te if;
that o7l ¢ Hz(w). Also we would like to note that for a general W, »1  and ;;j
other elements of Hz(w) are note necessarily in L;Xq and therefore their N
Fourier coefficients are not well-defined. By an argument similar to that of 3?;
Rosenblum [15, p.41] one can identify the elements of Hz(w) with analytic '?;
matrix-valued functions, and thus here by the Fourier coefficients of elements ey

of Hz(w) we actually mean the Taylor coefficients of these analytic functions.

. . . _ l-r

A Let Pr(.) denote the Poisson kernel, i.e. Pr(e) = Trcosers?’ .
i! O<r<1 and -m <8 < n. For a function V¥ ¢ Hz(w) ‘with Fourier (Taylor) o
- coefficients {vkim the convolution of Pr and ¥ 1is defined (and denoted) Eﬁ
- k=0 -
' by =
(3.3) ‘l’r(e‘e) = w(rele) = (P*\l')(ele) = 2 y l"k e'lke. -{:
r & k 5
k=0 N
We say that the Fourier (Taylor) series of a function Vv ¢ Hz(w) is o
2 N
Abel summable to ¥ in the normof L (W), if and only if ¢ =
' ::::
(3.4) Tim_ ||y - v]l, =0. )
L o~
vy
e
d':-‘
It follows from the isomorphism hetween the time and spectral domains .

»
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that the autoregressive representation of {Xn} is mean Abel summahle, if and ffjﬂﬁ
only if the Fourier (Taylor) series of ¢'1 is Abel summable to ¢'1 in the -
norm of Lz(w).

Next, foliowing the pattern of Theorems 3.1 and 3.2, we find a necessary

and sufficient condition on W for the Abel summability of the Fourier (Taylor)

series of every function in Hzxw). For this the matrix-vaiued function Q

defined (in terms of ¢) by

e aanoan e o,

.

(3.5) Q(e) = Q(r, 6, ¢) = ¢-l(reie)¢(e1e), -r<B<T, L

; . o
plays an important role. The following theorem is actually a matricial extension i -
of some of the (univariate) resuits due to Rosenblum [15, Theorem 1(ii)]. :

Theorem 3.3. Llet W = ¢¢* be a q xq matrix-valued density function with

log det W ¢ Ll. Then the following statements are equivalent.

(a) The Fourier (Taylor) series of every function ¥ in Hz(w) is Abel
summable to ¥ in the norm of Lz(w).

{(b) There exists a constant K

1’ 0 < K1 < », such tnat for all functions

Yo Hz(w) we have

(3.6) I Pr*\v|| v K R3] g 0<r<l )
(c) Tnere exists a constant K2. 0 <K, <=, such that ;f
: :
(3.7) (P *tr 00")(6) <Ky, O <r <1 and -w<0sm =
Proof. (a)=> (k) follows from the uniform boundedness principle. Q:ﬂ
(b) => (a) follows from an argument similar to that given in Rosenblum ;33‘
-
(15, pp. 32-33]. 0

. . W e e et tatacie h e e e e o an e e a a e e
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3: To prove that (b) implies (c), we note that for each 0 <r <1 and o
F‘ -x < x < n the function v(e) = v(6, r, x) = (1 - |r~e'(0'x))‘1 ¢'l(0) is in -
Ei Hz(u). This is a consequence of the closure theorem for stq. cf. [8, p. ?88]. ﬁ%é
A ig, =2 .o
N By using the simple inequality 4(1-r2)l1-r2e'e| > Pr(e), and applying (3.6) to N
. this function ¥ we get (3.7): , j;“
.'.‘
T -1, i6 io ne
[ ptomx) tro™t (re®) o(0) or(0) so(re®yamte) 5
-'n‘ T
2. (", 2 i(e-x), 2, -1, ie io i
< 4(1-r%) J [1-r© e | tr ¢ "(re ")w(e) ¢*(re ")dm(v) -
-T "
T s fa. =2 - -1 ;
< 4(1-r2) Ky J ll-re1(e X)I tr ¢ 1(B)W(e) o* (re‘e)dm(o) ok
- .
" —d
= 4q Kl f_“Pr(e-x) dm(e) = 4q,K1. .
) o
To prove (c) implies (b) we note that for any ¥ € H™(N) [using the ;;f
Cauchy-Schwartz inequality, Fubini's theorem and (3.7)] that reth
- -F-*
[ je iog
”Pr*w”u =J tr vire ")o(6) o*(e) v*(re )dm{e)
-7
W - f tr v(re' ®)o(re'®)a(0)0* (0) [¥ire'®)o(re’ ®)Tan(o) ~—
- - -‘_.
: m i ie io 10y % ]
' < J tr QQ* - tr Y(re “)eo(re °) [¥(re “)o(re )] am(o) .
-7 -
n : ie ie, 2 -
= I tr QO | § WK.(re )oJk(re )} dm(e) —
ko=l g J=1 *J =
q i U g 2 e
= 7 J tr QO0* | I Pr(a-x)( ij ¢jg)(x)dm(x)| dm( o) o
ke2=1 J=n -7 J=1 ' N
q - Sy
(m q 2 _
< 1 J trQ0* (| P (e=x) () v .o, )(x) : TN
- ~ - 0. dm(x))dm e
kb=t ) j-" r a ki e ' (x))dm(0) :;-:::‘
m n . ,_:-::
= J tr v W yr ( [ Pr(x-e)tr QQ*(e)dm(e))dm(x) _;y
-7 -1 ot
s K ”"’“w . '.
Q.E.D. N
s
- o
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Al though Theorem 3.3 provides two equivalent necessary and sufficient
conditions for the Abel summability of the Fourier (Taylor) series of every
function in Hz(w). these conditions are hard to apply and are not explicit in
terms of the components of W. In the next theorem by using Theorems 3.1, 3.2
and 3.3 we provide sufficient conditions for the Abel summability of the Fourier
(Taylor) series of all functions in Hz(w) and in particular ¢'1. which are
easy to apply and more explicit in terms of the components of W.

Theorem 3.4. Llet W be a q x q matrix-valued density function with

log det W ¢ L1 and P be a complex-valued trigonometric polynomial of some
degree n.

(a) If W e A, then the Fourier (Taylor) series of every function VY ¢ Hz(w)
is Abel summable to ¥ in the norm of Lz(w).

(b) Let W' e A. If W= IPIZN', then the Fourier (Taylor) series of every
function V¥ ¢ Hz(w) is Abel summable to ¥ in the norm of Lz(w).

(c) Let S ={veHo(W); ¥ Wyre L:xq} and W' c A@M. If W= |P|%W",
then the Fourier (Taylor) series of every function ¥ ¢ S is Abel summable
to ¥ in the norm of Lz(w).

Proof. In view of Theorems 3.1 and 3.3, proofs of (a) and (b) are the same
as the proof of Lemma 6 in [12]. (c) follows from (b) by using the method of
proof of Theorem 3.2 and replacing S: by ¥.. Q.E.D.

Now, we turn to the problem of Cesaro summability of the Fourier
(Taylor) series of functions in Hz(w). Llet ¥ ¢ HZ(N) with Fourier (Taylor)
coefficients {Wk}g and partial sums Sn(e) = kgo Wkeike . For a >0, we
say that the Fourier (Taylor) series of ¥ 1is (C, a)_summable to ¥ in the

norm of szw) if

n -1
. n-k + a-1 n +aoa -
(3.8) tim llkz0 n- )( n ) S, - ¥l = 0.

[
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For scalar sequences it is well-known that the strength of (C-a)
methods increases with a. However, there are series which are Abel summable
but not (C,a)-summable for any o > 0, cf. [5, p. 108]. Because of this and
in view of the importance of relations like (3.8) in prediction of {Xn}’ cf.
Section 1, we consider the stronger method of compounded Cesdro summahility
method: Llet {an}; be a (fixed) monotone increasing sequence of positive num-

bers. We say that the Fourier (Taylor) series of V¥ ¢ HZ(N) is compounded

Cesdro summable to ¥ if

n ' -1
tim || ) (" kt apl)n +ay S, - ¥l =0.
n>o k=0 n-k n

It is known [1] that the compounded Cesdro summability method is
a

regular, if and only if Tim 7? = 0. For more information on the subject
N

of summability and the definition of undefined terms the reader may refer to

{s].

The next theorem establishes analogue of Theorem 3.4 for the compounded

Cesaro summability.

Theorem 3.5. Let W be a q x q matrix-valued density function with

log det W ¢ Ll, P be a complex-valued trigonometric polynomial of some degree

n and {an} a (fixed) monotone increasing sequence of positive numbers with

a
Hm_nﬂ=o.
noc

(a) Let W' e A. If W= IPIzw', then the Fourier (Taylor) series of every

................ R T - N R T T T A = T e T T T e T T AT T e TS T e T e TN TR e

function ¥ ¢ Hz(w) is compounded Cesdro summable to ¥ 1in the norm of Lz(w).

(b) Let W' e A@M and S be as in part (c) of Theorem 3.4. If W = |P|2w',
then the Fourier (Taylor) series of every ¥ ¢ S 1is compounded Cesdro summable

to ¥ 1in the norm of LZ(W).
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Proof. We prove only part (a) since the proof of part (b) is the same as the
proof of Theorem 3.4(c).
To prove (a) first we show that every VY ¢ HZ(H) has radial limits

a.e. (Leb.) Let ¢ and ol be the optimal factors of |P|2 and W', respec-

. tively. Then ¢ the optimal factor of W = |Plzu' is given by 0, - Since
W « A it follows that 0;1 € Hzxq » and since ¢ is an analytic polynomial
of finite degree with no zeros in the open unit disc we have that ¢'1 c,HG.
0 <& <% Thus ol e HZiq . éL-= 2 + % . Now, we note that every ¥ ¢ HZ(H)
has a representation of the form lv = h ¢'1, where h e Hzxq, and this entails
that V¥ ¢ H:‘q with % = % + #% . Therefore, every VY € Hz(w) belongs to H:xq.

for some p > 0 , which implies that Y has radial limits a.e. The rest of the
proof follows from Theorem 3.4(b) and adupting the method of proof of Theorems
6.1 and 6.3 [1]. Q0.E.D.
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